Non Absolutely Convergent Integrals of Functions Taking Values in a Locally Convex Space
نویسندگان
چکیده
منابع مشابه
Strongly almost ideal convergent sequences in a locally convex space defined by Musielak-Orlicz function
In this article, we introduce a new class of ideal convergent sequence spaces using an infinite matrix, Musielak-Orlicz function and a new generalized difference matrix in locally convex spaces. We investigate some linear topological structures and algebraic properties of these spaces. We also give some relations related to these sequence spaces.
متن کاملSingular values of convex functions of matrices
Let $A_{i},B_{i},X_{i},i=1,dots,m,$ be $n$-by-$n$ matrices such that $sum_{i=1}^{m}leftvert A_{i}rightvert ^{2}$ and $sum_{i=1}^{m}leftvert B_{i}rightvert ^{2}$ are nonzero matrices and each $X_{i}$ is positive semidefinite. It is shown that if $f$ is a nonnegative increasing convex function on $left[ 0,infty right) $ satisfying $fleft( 0right) =0 $, then $$2s_{j}left( fleft( fra...
متن کاملA theory of non-absolutely convergent integrals in R with singularities on a regular boundary
Specializing a recently developed axiomatic theory of non-absolutely convergent integrals in R, we are led to an integration process over quite general sets A ⊆ R with a regular boundary. The integral enjoys all the usual properties and yields the divergence theorem for vector-valued functions with singularities in a most general form. Introduction. Consider an n-dimensional vector field ~v whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 2006
ISSN: 0035-7596
DOI: 10.1216/rmjm/1181069383